

Overview of ROCCC 2.0

Walid Najjar and Jason Villarreal

SUMMARY
FPGAs have been shown to be powerful platforms for hardware code acceleration. However, their
poor programmability is the main impediment to their wider adoption. ROCCC (Riverside
Optimizing Compiler for Configurable Computing) is a C to VHDL compilation toolset specifically
designed for the efficient and rapid generation of high-performance code accelerators on FPGA
platforms. 

FPGAS AS HARDWARE ACCELERATORS
Over the past decade or so, FPGAs have become attractive platforms for hardware code
acceleration because they provide a good tradeoff between the programmability of CPUs and
GPUs and the performance of ASICs. This particularly true for streaming applications, such as
signal, image and video processing as well as several high performance computing applications,
where a circuit is configured in hardware and the data is streamed through it generating one set of
results every cycle. In this same period we have witnessed a tremendous growth in the size of
FPGAs and the bandwidth that can be supported in/out of the chip allowing very large and
massively parallel circuits to be implemented.

Published papers report speedups ranging from one to four orders of magnitude on a wide range
of applications. The primary reasons for such speedups are:

➡ The massive on-chip parallelism allowing multiple concurrent loop iterations

➡ Data re-use reduces the re-fetching of data from external storage. The custom
configuration of on-chip registers allows the sharing of intermediate values.

➡ The elimination of memory off-loading: both CPUs and GPUs must fetch data from
memory, hence the data has to be loaded into memory first. FPGAs can directly interface to
networks, disks and other I/O devices.

However, their programmability remains a major barrier to their wider acceptance by application
code developers. FPGAs are commonly programmed using low-level hardware description
languages such as VHDL and Verilog. Such languages require complete timing information and
low-level details that software designers are traditionally unfamiliar with. They also assume that the
application developer is throughly trained as a hardware designer. Hardware implementations may
provide critical speedup to software applications, necessitating a way to overcome the long
development times and programming overhead normally required to create FPGA
implementations.

ROCCC 2.0
The Riverside Optimizing Compiler for Configurable Computing (ROCCC) raises the level of
abstraction for programming FPGAs to a subset of C, allowing developers to translate their code to
an FPGA platform while remaining in a familiar programming language. ROCCC is not designed as
a hardware description language and cannot be used to describe arbitrary circuits in C. Instead,
the focus of ROCCC is on generating high performance hardware accelerators, from natural C
code, that perform a wide range of computations on streams of data.

Overview of ROCCC �1

Through extensive optimizations, ROCCC transforms this subset of C into VHDL code that
achieves very high throughput. The purpose of these transformations is to generate circuits that (1)
maximize the throughput, (2) minimize the number of off-chip memory accesses, and (3) minimize
the area used on the FPGA. The user is given fine-grained control over the extent of these
transformations through an elaborate GUI developed as an Eclipse plug-in.

FPGA boards and platforms have widely varying characteristics such type, size and number of
FPGAs, number of memory modules, bandwidth to memory, I/O interfaces (e.g. Ethernet, USB,
PCI, SATA etc). Applications must be tuned to take advantage of the platform specifics, and the
tuning traditionally would involve rewriting the VHDL to best utilize the particular resources of a
given platform. ROCCC allows the user to tune a large number of optimizations to better utilize the
particulars of a given platform without rewriting the source code. One of the most powerful
controls that ROCCC supports is through the control of loops. Users may specify exactly which
loops are unrolled, and by what amount, unlike in a traditional compiler where all of these decisions
are made across the whole program. Unrolling will adjust the number of data elements required
per loop iteration, which in turn affects the bandwidth required for maximum throughput.
 Additionally, the user can control the number of incoming channels on a stream-by-stream basis,
ensuring that incoming and outgoing data rates are maximized.

In ROCCC, the same source code can be tuned for different FPGA platforms by varying the
compiler optimizations in the GUI, without altering the original code.

ROCCC also provides optimizations that are specific to hardware platforms, including systolic array
generation, temporal common subexpression elimination, and several low-level optimizations that
control the amount of pipelining and fanout.

DESIGN SPACE EXPLORATION AND PRODUCTIVITY
The ability to program FPGAs in a higher level language and through tuning of optimizations create
many different physical implementations not only greatly increases user productivity, but also
enables design space exploration which might have previously been out of reach due to time
concerns.

One of the most critical features of a design environment is the ability to reuse sections of code.
 The ROCCC 2.0 compiler is built around the concept of reuse through the creation and integration
of modules. Modules are concrete hardware blocks that have a known number of inputs and
outputs, some internal computation, and a known latency. Modules written in C can be reused as
both software functions or hardware functions and integrated directly into larger designs. Once
compiled to VHDL, modules are available for integration in larger code through standard C function
calls.

Overview of ROCCC �2

The same mechanism which allows the ROCCC compiler to reuse previously compiled modules
allows for the importing of other VHDL codes or hardware cores into larger designs. ROCCC
system code can call hardware modules, including those imported from other locations, and
generates a hardware component that integrates these external cores into one cohesive data-path,
handling all of the connections and overhead.

The ROCCC GUI is a plugin designed for the Eclipse IDE that works on both Linux and Mac
systems. The GUI provides the user with full control over the programming, compilation, and
interfacing of the ROCCC code. It provides an integrated way to manage the instantiation of
modules and cores into C code, control both high and low level transformations (including
pipelining), interface with platforms, and generate test-benches for verification.

An example
The Viola Jones Face Detection algorithm detects the existence of faces in an image by searching
the sub-windows of that image and running a multi-stage classifier cascade agains that sub-
window. Each stage of the classifier cascade can detect the presence of faces with a low rate of
false negatives and false positives. Each stage of the classifier is more rigorous than the previous
one and hence require more computations. The serial cascading of stages makes sense in a
software execution since it allows the rapid elimination of sub-windows with no faces. In hardware,
the area is allocated on the FPGA for all stages, conceptually they could all be executed in parallel.
ROCCC code that implements the Viola Jones algorithm automatically detects this parallelism and
implements a parallel data-path with a high throughput.

The ROCCC implementation of 5 stages of the classifier takes 587 lines of modularly written C
code and generate 14,321 lines of VHDL, a ratio of 24.4. Assuming a bloating factor of 2x,
because the VHDL code is machine generated, this translates in a 12x productivity increase. The
resulting circuit can process one sub-window per cycle and achieves 150 MHz.

ROCCC OPTIMIZATIONS
In addition to providing an environment that allows the development of ROCCC modules and
systems, the ROCCC GUI provides access to all of the compiler's controls. As such, the GUI gives
the user control over all of the specific high and low level optimizations and allows the user to
select how to apply these optimizations on a much finer-grained level than provided by other
compilers.

High level optimizations
High level optimizations control transformations that affect the overall structure of the generated
hardware architecture. These include loop optimizations such as unrolling, inlining optimizations,
and redundancy specification. Unlike traditional compilers, each of these optimizations can be
specified on individual elements of the ROCCC code and applied in different configurations so as

Overview of ROCCC �3

to produce different hardware architectures. For example, loop unrolling can be specified on a
loop-by-loop basis, with different loops being unrolled different amounts in order to generate a
hardware structure that uses an amount of data that can be supported by the I/O of the target
hardware platform. Similarly, inlining and triple modular redundancy can be specified differently for
different individual modules used in the design.

Low level optimizations
Low level optimizations give users control over the specifics of the generated data-paths. As an
example, fine-grained control over the amount of pipelining of the data-path: a slider controls the
amount of operations placed into each pipeline stage providing a convenient control over whether
frequency or area is the limiting factor. Other low level optimizations control whether arithmetic
instructions are balanced or not (important when matching software results with floating point
operations) and precision control that can limit rounding issues.

Different hardware platforms have completely different interfaces to memory, including different bit-
widths and multiple channels. In order to allow ROCCC generated code to be general, we do not
target any one specific platform but instead give control of the memory interface generation to the
user. The ROCCC GUI allows the user to specify the number of channels and bit width on a
stream-by-stream basis without altering the ROCCC C code so the generated hardware can best
connect to a multitude of different hardware platforms.

The ROCCC GUI provides access to the database of modules available for use in ROCCC
development. These modules may have been previously compiled with ROCCC or can be
imported from other sources in the GUI, allowing ROCCC code to utilize IP cores or HDL code that
was acquired from another source. Once the user specifies the input and output ports of an
external IP along with its latency, the ROCCC compiler will use them as appropriate. Instantiations
of these available modules appear as function calls in the ROCCC C code.

Certain operations in C do not have native hardware capable of computing them on certain
FPGAs, and any design that requires them must include extra hardware cores to compensate.
 These operations include floating point arithmetic, integer division, and integer to floating point
translation. Different hardware implementations of these functions will lead to different size and
speed characteristics of the final design, and the choice should be left to the user and not the
compiler. The ROCCC GUI exports control of these intrinsic operations to the user and allows
data-paths to be generated with a variety of cores, providing control for activating and deactivating
individual intrinsics, along with a set of default parameters.

Mapping to FPGA platforms
ROCCC users have the option of generating “generic” code or platform specific codes. In a generic
code the data is transferred to/from the circuit via on-chip buffers (BRAM) that can later be
connected by the user to a specific set of memories and/or I/O ports. The connections generated

Overview of ROCCC �4

are either scalar inputs or outputs that are read or written only once, or streaming connections that
have a simple memory interconnect.

The ROCCC GUI supports the generation of platform specific code for the Convey Computers HC
series and the Pico Computing M-500 series.

In addition to generating portable hardware, the ROCCC GUI also facilitates the creation of a test-
bench for each compiled component. The generation of a test-bench requires sample input and
output data in order to verify functionality. Since all ROCCC code is also a subset of C, this data
can be generated by compiling the ROCCC code in a C compiler, e.g. gcc, and running it in
software.

GENESIS OF ROCCC
ROCCC started as a research project at UC Riverside in 2002. Dr. Najjar had previously run the
Cameron Project (at Colorado State University, funded by DARPA within the ARS Program). In
Cameron, a new language was developed, single assignment C, along with a compiler. The
objective of ROCCC was to compile a true subset of C.

Jacquard Computing was founded to develop ROCCC as a commercial grade tool. I was funded
by AFRL through SBIR Phase 1 and Phase 2 (Contract FA9453-09-C-0173).

Overview of ROCCC �5

